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LETTER TO THE EDITOR 

Extended irreversible thermodynamics and runaway 
electrons in plasmas 

D Jou, M Ferrer and J E Llebot 
Departament de Fisica, Fisica Estadistica, Universitat Autonoma de Barcelona, 08193 
Bellaterra, Catalonia, Spain 

Received 9 May 1988 

Abstract. The stability of the steady state of a completely ionised plasma under an external 
electric field is analysed from extended irreversible thermodynamics. Fourth-order terms 
in the electric current are included in the generalised entropy and fluctuation theory is 
used to obtain numerical values for the coefficients. The final result is in good agreement 
with evaluations from a Fokker-Planck equation in plasma theory. 

Extended irreversible thermodynamics [ 1-61 is a generalisation of non-equilibrium 
thermodynamics which has received increasing attention in the past few years. As a 
special feature, it includes dissipative fluxes amongst the independent variables of a 
generalised entropy. Unlike the classical theory [7,8], which is'recovered in the limit 
of vanishing relaxation time of the fluxes, it leads to relaxational evolution equations 
for the fluxes which are useful for the description of high-frequency phenomena [9] 
and to generalised equations of state with non-equilibrium corrections [ 101. The 
connection between the dynamics of the fluxes and non-equilibrium equations of state 
is one of the main open topics in recent non-equilibrium thermodynamic theories 
[ 11-13], though it does not even arise in the usual non-equilibrium thermodynamic 
theory [7,8]. The latter one is based on the local-equilibrium hypothesis, so that it 
assumes apriori that the equations of state have in non-equiIibrium the same functional 
form as in equilibrium, but with a local meaning, and that the fluxes decay instan- 
taneously to the values given by the classical transport laws of Fourier, Ohm, Fick, 
Navier-Stokes, etc. 

Here, we study an instability of the electric current in a classical plasma under an 
electric field, as predicted by extended irreversible thermodynamics. The stability 
analysis is a crucial point in the understanding of the generalised equations of state, 
so that it deserves a careful analysis either from numerical and experimental perspec- 
tives. In the situation analysed here, we compare our thermodynamic predictions with 
the results obtained from a Fokker-Planck equation in plasma theory [ 141. 

We take as independent variables of the entropy the classical ones (internal energy 
per unit mass U, specific volume per unit mass U, electron number density ne)  plus the 
electric current density J [15,16]. The generalised entropy per unit mass has the form, 
up to fourth order in the electric current, 

S( U, V, n e ,  J )  = seq( U, U, ne)  - (YJ- J - /3 ( J .  J )*  (1) 
with seq(u, v, ne)  the local-equilibrium entropy. The coefficients a and /3 may be 
calculated from fluctuation theory. Indeed, according to Callen's theory of fluctuations 
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[17], one has for the second and the fourth moments of fluctuations of J 

((SJ,.)’) = k / 2 a  ( 2 )  

((SJx)4)= - ( 3 p k 3 / 2 a 4 ) +  ( 3 k 2 / 4 a 2 ) .  ( 3 )  

These relations allow one to compute the coefficients a and p from ((SJ,)’)  and 

In the presence of an electric field, one is led for the second differential of the 
(( SJx)4), the angular brackets meaning equilibrium averages. 

entropy to 

(d’s/dJ’) = -2( + 6 p J i )  ( 4 )  

with Jo = aE, the mean value of J in the steady state, U being the electrical conductivity 
of the plasma. The thermodynamic stability theory [17,18] requires, amongst other 
conditions, that (d’s/dJ’) must be negative. The negative character of the second 
differential of the entropy is also related to the hyperbolicity of the evolution equations 
of the system [19] so that it may have also a dynamical meaning. 

From (4) it is seen that the second derivative with respect to J becomes positive 
and the corresponding steady state is no longer stable when the electric field E becomes 
higher than the critical value 

Ecrit= ( l / a ) ( - ~ ~ / 6 P ) ” ’ .  ( 5 )  

We now turn to the explicit calculation of a and /3 from equilibrium statistical 
mechanics. We have for the moments of the fluctuations of the fluxes 

((SJ,.)’)= dc  dc‘ e’c,c:(Sf(c>Sf(c’)) 

and I dc  I dc‘ I dc“ dc”‘ e4cXc~~~c~(6f~”~f(c’)6f(c‘’)Sf(c’’’) 

where we have taken into account that 

J =  ecf(c)dc. i 

(7) 

Here, f (c )  is the velocity distribution function, c is the relative particle velocity with 
respect to the barycentric motion of the system and e is the electron charge. 

The second and fourth moments of the fluctuations in the velocity distribution 
function may be obtained from Callen’s theory [17] by starting from the Boltzmann 
definition of the entropy 

s = -kv f (c)  lnf(c) dc I (9) 

where s and v are entropy and volume per unit mass, respectively. To apply Callen’s 
formalism, we define the thermodynamic conjugate o f f (  c) as 

F( c, c’) = -e[ kvf( c‘) lnf(  c’)]/df( c) 

= - kv[  1 + lnf(  c)]S( c - c’) (10) 
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where S(c - c’) is Dirac’s delta. Callen’s expressions for the second and fourth moments 
of fluctuations lead then to 

(Gf(c)Sf(c’)) = ( l /v ) f (c )S(c  - c’) ( 1 1 )  
and 

(v-(c)  Sf(C”) sf(cff’)) 
= (1/ v’)f( c)S( c - c’)S( c’ - c”)6( C”- dff) 

+ ( 1/ v 2 ) f (  c)f( c’) 6 (c  - C’f’) s (c’ - c”) 

+ (l/v’)f(c)f“(c’’- cf”)8(c- c’) 

+ (l/v2)f(c)f(c”’)6(c- cf’)S(c‘- c”’). 

When ( 1  1)  and (12) are introduced into the macroscopic relations ( 2 )  and ( 3 ) ,  and 
taking for f( c) the Maxwell-Boltzmann equilibrium distribution function, one obtains 
for the parameters a and /3 

a = k(2e2n2kT)-’ /3 = -km(8e4n:k2T2)- ’ .  (13) 
From this result we may calculate the critical value of the electric field as given by 

( 5 ) ,  which turns out to be 

,Ecrit = ( 2 / 3 ) ” 2 ( n e / a ) ( k T / m ) ” 2 .  (14 )  
It remains to look for some independent corroboration of this result. We turn our 

attention to plasma physics [ 141. Here, the analysis of a fully ionised classical plasma 
under the action of an external electric field may be carried out by starting from the 
corresponding Fokker-Planck equation. If the electric field is small enough, a steady 
state may be reached in which the acceleration of the particles by E is balanced by 
the collisional drag. If the field is too strong, however, a steady state may not be 
reached, but the electrons acquire increasing speed and run away. The critical electric 
field beyond which there is no steady state relation between collisions and the driving 
field as calculated from the Fokker-Planck equation turns out to be 

E,,,, = 0.99(2/3)’”( n e / a ) ( k T / m ) ” 2 .  (15 )  
Rather than rely on the good agreement between the macroscopic result (14) and 

the kinetic evaluation (15), we insist on the posible physical significance of the 
fourth-order terms in the entropy. Such terms have been introduced here for the first 
time in extended irreversible thermodynamics, which in previous versions was limited 
to second-order terms. Furthermore, fluctuation theory reveals itself as a useful tool 
for the computation of the coefficients appearing in the entropy, which are essential 
for the evaluation of our results. 

Note finally that the increment in velocity produced by an electric field of the order 
of (14) between two successive collisions is of the order of the variance of the velocity 
distribution function. After several collisions, this may produce considerable separ- 
ations with respect to the Maxwellian distribution, leading to instabilities. 

As has been seen in this letter, extended thermodynamics does not merely lead 
to only very minor corrections to the standard thermodynamic theory, but may be 
useful for the description of quite relevant phenomena. 

We acknowledge fruitful discussions with Professor J Casas-Vizquez and the financial 
support of the Direccih General de Investigacih Cientifica y TBcnica of the Spanish 
Ministry of Education under grant PB 86-0287. 
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